If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+48x+288=0
a = 1; b = 48; c = +288;
Δ = b2-4ac
Δ = 482-4·1·288
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-24\sqrt{2}}{2*1}=\frac{-48-24\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+24\sqrt{2}}{2*1}=\frac{-48+24\sqrt{2}}{2} $
| 7/s=3 | | 27x+36=27x+71 | | 9b+3=3 | | 5(-3+4x)=205 | | 13x-7=6x+35 | | 8(x−4)=7(x+2) | | x-8x+160=0 | | 5r-3=+412r | | -4y-15=3(y+6)-(y+3) | | 4y+36=5y | | 3x-1÷=x-3 | | (15+x)=(6x+60) | | 29+x+33=90 | | x-185=114+14x | | 42+5x+4+7x+6=180 | | ∛9x-2=∛5x+10* | | 4a+3=23 | | -92-6x=28-2x | | 3(x-4)=12x4. | | (6x-10)+(4x-10)=180 | | 2(3x+5)=9x+7-3x+3 | | -17-3x=-4x+13 | | 52.7+69.1+x=180 | | 7t+9=37 | | 2(-5d)=-8 | | ((n-2)*180)/n=160 | | 4z-9=2-21 | | 5+4d/3=-7 | | 4x-2(x-4)=-6+5x | | 35+62.2+x=180 | | 3y+12=-y+8 | | x-78=78-5x |